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Abstract
In this paper we present a comparison of three different methods that can be used for estimating the stiffness of qPlus sensors. The

first method is based on continuum theory of elasticity. The second (Cleveland’s method) uses the change in the eigenfrequency

that is induced by the loading of small masses. Finally, the stiffness is obtained by analysis of the thermal noise spectrum. We show

that all three methods give very similar results. Surprisingly, neither the gold wire nor the gluing give rise to significant changes of

the stiffness in the case of our home-built sensors. Furthermore we describe a fast and cost-effective way to perform Cleveland’s

method. This method is based on gluing small pieces of a tungsten wire; the mass is obtained from the volume of the wire, which is

measured by optical microscopy. To facilitate detection of oscillation eigenfrequencies under ambient conditions, we designed and

built a device for testing qPlus sensors.
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Introduction
The invention of scanning tunneling microscopy [1] and atomic

force microscopy (AFM) [2] opened new horizons in characteri-

zation and modification of surfaces and nanostructures. STM is

routinely used nowadays as a standard technique to charac-

terize and modify objects at the atomic scale. However, its

application is limited only to conductive samples as the

tunneling current flowing between a probe and a sample is

employed as the feedback signal.

This limitation was surpassed by AFM techniques, which are

essentially based on force detection acting between the tip and

the sample. In principle, this approach can be adapted to any

arbitrary sample, independently of its conductivity properties.

Consequently AFM techniques have found many applications

across different scientific fields, including biology, chemistry

and physics. In particular, noncontact atomic force microscopy

[3] (nc-AFM) has developed into a powerful technique for

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:bergerj@fzu.cz
http://dx.doi.org/10.3762%2Fbjnano.4.1


Beilstein J. Nanotechnol. 2013, 4, 1–9.

2

imaging with true atomic resolution [4,5], chemical sensitivity

[6-8] or for performing single atom manipulation [9-11] on all

types of surfaces, including insulators.

Shortly after the invention of AFM and STM, the first attempt

to combine static AFM and STM measurements was made by

Dürig et al. in 1986 [12]. A few years later, combined nc-AFM/

STM using a Si cantilever was reported for the first time (see

[13]), showing the capability to record simultaneous STM and

AFM signals with atomic resolution on a metal surface [14]. At

the same time F. J. Giessibl introduced so-called qPlus sensors

[15], which allow simultaneous acquisition of the tunneling

current and the forces with a small oscillation amplitude. This

method increases substantially the sensitivity to the tunneling

current signal comparing to traditional Si cantilevers. This new

approach opens new possibilities in the characterization of

surfaces and nanostructures on the atomic scale (see, e.g., [16]).

Not surprisingly, qPlus sensors have become frequently used

for noncontact measurements nowadays (see, e.g., [7,9,17-21]).

The heart of the qPlus-based AFM/STM microscope is a tuning

fork with one prong fixed and the other, with a metallic tip posi-

tioned at the very end, freely oscillating. The variation of the

resonant frequency of the prong reflects directly the interaction

of the sensor with the sample. At the same time, the presence of

a metallic tip allows simultaneous acquisition of the average

tunneling current flowing between tip and sample when the bias

voltage is applied. In principle, the force acting between the tip

and sample might be accessible from the detected frequency

modulation. However, a reliable estimation of the measured

force depends on several factors, among them the proper cali-

bration of the mechanical properties (stiffness) of the sensor.

Originally all mass-produced tuning forks are tuned to the same

frequency by laser trimming. However, it has been shown that

the sensor fabrication process may strongly alter the stiffness

[22,23]. The value of the stiffness can also be influenced by

fixing the tip on the prong and by the gluing process. Further-

more, it has been shown that a slight shortening of the oscil-

lating prong may be beneficial for improving electrical sensi-

tivity of the sensor [20]. What is more, when the tunneling

current is collected on the tip, an additional wire, usually gold,

needs to be attached for STM measurements in order to avoid

any interference between the tunneling current and deflection

channels [20]. This wiring may have a certain impact on the

mechanical properties of the sensor. Therefore to ensure proper

estimation of detected forces the mechanical properties of each

sensor should be calibrated carefully.

In the past, several methods have been developed to estimate

the stiffness of sensors [24]. The first class of methods uses the

variation of the resonant frequency before and after the addi-

tion of some small mass to the end of the prong. One example

of this method is the added-mass (Cleveland’s) method [25].

The second method estimates stiffness from the bending of the

sensor as a function of the applied force [26]. The third method

uses the thermal motion of the sensor to estimate the stiffness

(for details see [27]). Additionally, the stiffness can be calcu-

lated directly from the elastic properties of the sensor [28]. All

methods have some advantages and limitations, as we will

discuss later.

The aim of this paper is to compare and critically discuss the

following methods for estimating the stiffness of qPlus sensors:

(i) the added-mass method; (ii) thermal excitation; and (iii) a

method based on the continuum theory of elasticity. In particu-

lar we will estimate and compare the stiffness of several home-

built and commercial qPlus sensors using different methods.

We will also briefly describe a simple testing device for reli-

able detection of the mechanical properties of sensors under

ambient conditions.

Experimental
Sensors
In this work, we used two types of sensors: commercial

(Omicron–Oxford instruments) (com) and home-built (hb)

sensors. The commercial sensors have a length of ~2.4 mm and

the tip is placed on the side of the prong usually around

0.05 mm from the end. No additional wire is used in this design

for the tip connection.

The home-built qPlus sensors were built from commercially

available tuning forks from Micro Crystal, in the SMD package

MS1V-T1K. The original tuning forks were shortened in order

to reach higher sensitivity (charge produced by deflection),

which allows us to operate with lower amplitudes [20,29]. The

schematic figure of the sensor and a detail of a tip mounting is

shown in Figure 1. Ceramic plates were used as a support for

tuning forks. One side of these plates was covered by a very

thin copper layer for shielding [20]. The tip itself is connected

to one of the pins of the sensor by a combination of gold (ø =

25 μm) and copper (ø = 500 μm) wire. In order to minimize

unnecessary vibrations the copper wire is fixed to the copper

shield by nonconductive epoxy (Torr seal). As a result, only the

thin gold wire is allowed to vibrate with the motion of the

prong. The gold wire is attached to the end of the prong by the

same nonconductive epoxy as used before and, as the last step

during the sensor construction, the tip is carefully mounted

directly to the gold wire by a conductive epoxy (EPO-TEK

H21D) in such a way that there is no additional electrical

connection to the rest of the prong. Tips are etched from

0.125 μm tungsten wire in 2 M solution of NaOH. We use the
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Figure 1: Home-made qPlus sensor consists of the following parts:
(1) base stage (from Omicron–Oxford instruments), (2) ceramic plate,
(3) copper shield that is glued to the ceramic plate (4) (shortened)
tuning fork, (5) tip, (6) copper wire for supporting the gold wire, (7) gold
wire used for making connection to the tip, (8) gold wire providing
connection between copper shield and the shielding electrode, (9) gold
(or copper) wire for collecting the deflection signal [20]. Detail shows
the fixing of the tip to the prong and gold wire for collecting the
tunneling current.

drop-off method for etching our tips, thus the final tips have the

shape of a droplet and they are between 200 and 300 μm long.

Testing device for measurements in ambient condi-
tions
Cleveland’s method requires detection of an eigenfrequency. To

facilitate these measurements, we constructed a simple device

for testing the mechanical properties of qPlus sensors under

ambient conditions. The tester has two amplification stages as

shown in Figure 2. The first stage contains two current-to-

voltage converters (IVC) that are used to generate voltage

signals from the small currents produced by two electrodes of

the fork during its sinusoidal motion. OP 111 operational ampli-

fiers (OPA) in a TO 99 package were used as IVCs with

100 MΩ feedback resistors. In order to gain the maximum

performance of the device, the inputs of amplifiers were

brought as close as possible to the outputs of the sensor: the

lengths of the connecting wires were about 1 cm only. Further-

more, the SMD-packed feedback resistor was mounted directly

between the input and the output legs minimizing the length of

wiring to a few millimetres. By this construction the input and

the parasitic capacitance of the feedback resistor could be mini-

mized. Note that nowadays the old OP 111 can be replaced by a

faster, less noisy OPA (e.g., OP 637, etc.). However in the

frequency range of our interest, OP 111 performed satisfacto-

rily.

Figure 2: Two-stage amplifier used for testing qPlus sensors. The first
stage works as a charge amplifier in the frequency range of our tuning
forks. The second stage is a differential amplifier, which allows us to
improve the signal-to-noise ratio [30] and can eliminate the driving
signal, which is coupled by stray capacitances, from the deflection
channel.

The second stage is a differential stage, in which the output

voltage of the first stage can be optionally enhanced up to 103

times. Due to the electrode configuration of the prong, the

signals from the first stage are in inverse phase with respect to

each other. Therefore the application of a differential amplifier

leads to a better signal-to-noise ratio [30]. Furthermore, the two

OPAs in the first stage were mounted in a way that the stray

capacitances are tuned to be nearly the same. By this design, the

driving signal is coupled by stray capacitances almost identi-

cally (phase and amplitude) to each input of the OPAs. Conse-

quently this unwanted component becomes almost completely

nulled out by the differential stage. This procedure can be

applied to minimize coupling from other sources, e.g., bias

modulation used for Kelvin probe measurements.

A piezo tube is used for mechanical excitation. Apart from the

rubber legs of this small instrument there is no additional vibra-

tion isolation. Finally, SPECS Nanonis OC-4 PLL was used for

data acquisition.

UHV measurements
The measurements requiring precise vibration and sound isola-

tion were carried out in UHV on an Omicron VT XA qPlus

AFM/STM at room temperature (RT) at a base pressure below

1 × 10−10 mbar. The resonant frequency ν was determined by

using the same PLL as for the ambient measurement. A high-

quality PC sound card ASUS Xonar Essence ST in combina-

tion with a free FFT software Spectrum Lab (Audio Signal

Analyser) was used to record thermal-noise density spectra.
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Table 1: Measured lengths of tested sensors and calculated stiffnesses. In the case of the commercial sensor, the length defined by the tip mounting
position and the resulting effective stiffness is shown in brackets. Estimated error is in the range of 5%.

Sensor hb1 hb2 hb3 hb4 com

l [mm] 1.853 1.842 1.816 2.314 2.4 (2.35)
k [N/m] 3818 ± 83 3887 ± 78 4056 ± 101 1943 ± 56 1757 ± 43 (1872 ± 43)

Results and Discussion
We carried out a series of measurements of sensors with prong

lengths varying from 1.8 to 2.4 mm. Due to the variation of the

length and of the mass of the attached tips, the resonant

frequency altered between 25 and 60 kHz. For commercial

sensors, the tip was attached on the side of the prong, effec-

tively shortening the tuning fork. Consequently two values of

stiffness can be considered; one taking into account the whole

length of the prong, and another that considers the length

defined by the tip mounting position (effective stiffness).

Compared to the case of real physical shortening (cutting), the

remaining part of the prong adds extra mass, and therefore it has

certainly a negative effect on the resonant frequency. The

interesting question is whether this kind of tip attachment has a

significant effect on the stiffness measurement. In the following

part of the text, the effective stiffness will be shown in brackets

right after the value corresponding to the total length.

Stiffness calculation from continuum theory of
elasticity
The tuning fork can be considered as a pure prism with a rectan-

gular cross section. Therefore the stiffness of the tuning fork

can be expressed by using the continuum theory of elasticity

[31] as follows:

(1)

where E is Young’s elastic modulus (for quartz E = 78.7 GPa), t

is the thickness (0.214 mm), w is the width (0.126 mm), l is the

length of the prong, and k is the stiffness of the tuning fork. In

order to determine the stiffness in this work, the length, which

is the only variable, needs to be known. All remaining parts can

be considered as constants because (i) we assume the Young’s

modulus to be constant for quartz tuning forks; and (ii) we

found from repeated measurements that variations in t and w are

negligible (less than ±2 μm) for our purposes.

The dimensions of the prong were determined by an optical

microscope Leica DM LM prior to insertion into UHV. The

horizontal resolution of this microscope with objective Leica N

PLAN L 50× (NA 0.5) is at least 2 μm. The measured lengths

and calculated stiffness values are listed in Table 1. By using

the minimal resolution for the microscope, the error of

measuring the length of the prong is below 0.1% and errors of

the thickness and the width are below 1.6%. The final precision

of this method is in the range of 5%.

Added-mass method
Cleveland et al. presented a very intuitive way for precise

determination of the stiffness, which is based on the measure-

ment of the change in the resonant frequency. This change is

induced by loading an extra mass to the lever, M, which is rela-

tively small compared to the total mass of the oscillator, m*.

The effect of M on the resonant frequency ν can be estimated as

follows:

(2)

where ω is the angular velocity. The Equation 2 can be

rewritten in a more usable form:

(3)

From Equation 3 we directly see that the loaded mass M is

linearly proportional to (2πν)−2. Therefore the dependence of M

versus (2πν)−2 should be linear, with a slope corresponding to

the stiffness k.

Consequently the stiffness k can be directly calculated from the

values of resonant frequencies before (ν0) and after (ν1) loading

the lever with the mass M:

(4)

Because the frequency can be measured with very high preci-

sion, the precision of the method relies mainly on the mass

measurement. For silicon cantilevers, several ideas have been

proposed for how to load them with known masses (see
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Table 2: Eigenfrequencies of tuning forks before (ν0) and after (ν1) loading of an extra mass M to the prong. In the case of the commercial sensor, the
length defined by the tip mounting position and the resulting effective stiffness is shown in brackets. Sensor hb3 was measured with and without gold
wire (with the same added mass). These values show that the influence of the gold wire is minor for shortened tuning forks.

Sensor hb1 hb2 hb3 hb3–w/o wire hb4 com

ν0 [Hz] 55872 48596 57030 58200 25929 25573
ν1 [Hz] 47787 43203 46283 46997 23728 23581 (23286)
k [N/m] 3835 ± 211 3846 ± 218 3945 ± 217 3991 ± 220 1857 ± 105 1782 ± 101 (1829 ±103)
M [μg] 11.43 10.96 15.94 15.94 13.60 12.17 (14.62)

[25,32,33]). In our case, the large tuning forks make the task

somewhat easier because they can support heavier objects. For

this reason, we introduce a method that does not require any

expensive microbalance scale or other types of high precision

instrument. In this method, we fix a small piece of tungsten

wire as close as possible to the tip. The mass of the load was

estimated from its dimensions measured with the optical micro-

scope and afterwards calculated using the bulk density of tung-

sten ρ = 19.3 g/cm3.

The amount of added mass must be chosen carefully as over-

loading the tuning fork may lead to anharmonicity, and conse-

quently Equation 3 will be not valid anymore. In order to be

sure that overloading does not occur, we added several loads to

a single sensor and the resonant frequency was measured for

each added mass. As it is clearly visible in Figure 3 the linearity

is still kept and thus Equation 3 and Equation 4 remain valid in

the range of the given masses.

Figure 3: A plot of added mass versus (2πν)−2(10−10s2) for a single
commercial sensor. A simple linear regression of the measured data
gives a stiffness, in this case the slope of linear fit, of 1753 ± 135 N/m.

Naturally, the tungsten wire needs to be fixed in a rigid way.

For this purpose, we used the Torr seal® epoxy, which was used

for sensor construction as well. On the one hand, experiments

showed that the adhesion force between tuning fork and glue

was strong enough to hold the tungsten wire during the

measurement. On the other hand, the surface of the tuning fork

is smooth. Therefore the glue can be easily removed after

measuring, without damaging the sensor and voiding its subse-

quent application. Unquestionably, the glue adds some extra

mass that we do not take into account in our method. However,

the amount of the glue used to fix the extra wire causes a

change in frequency that is negligible compared to the large

frequency shift caused by the tungsten wire loading. Figure 4

gives a typical example of the change in the resonant frequen-

cies after adding an extra load.

Figure 4: Graph shows two resonant curves. The blue curve corre-
sponds to an unloaded tuning fork with a resonance frequency of
55872 Hz. The red one refers to the same fork end-loaded with
11.43 μg. The resonance frequency shifts to 47787 Hz.

Results obtained by the added mass method for different

sensors are summarized in the Table 2. Lengths and diameter of

wires used as added masses were about 300 μm and 50 μm, res-

pectively. The optical microscope utilized in this work has a

resolution of about 2 μm, from this we estimate an error of the

length measurement less than 1% and for the diameter of ≈8%.

Consequently, the estimation of the added mass has a maximal

error of about 11%. Because the spring constant depends on the

added mass linearly and the error arising from the determin-

ation of frequencies is negligible, the estimated maximal error

of the stiffness from Cleveland’s method is also around 11%.
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Table 3: Stiffness values for home-built sensors measured by thermal-excitation method. Commercial sensors were not tested, because our qPlus
system is modified for our home-made sensors only.

Sensor hb1 hb2 hb3 hb4

k [N/m] 3650 ± 369 3702 ± 367 3872 ± 382 1779 ± 179

Thermal excitation
The harmonic oscillator in equilibrium with its environment

fluctuates in response to the thermal noise. The prong of the

tuning fork is assumed to behave like a simple harmonic oscil-

lator. The normal stiffness of the qPlus sensor can be related by

the equipartition theorem to its thermal energy during vibration,

leading to the relationship

(5)

where Ath is the amplitude of the thermal motion of the free

prong, kB is the Boltzman constant (kB = 1.38 × 10−23 J·K−1), T

is the temperature of the system (in our case it is RT) and k is

the stiffness of the tuning fork. This method can be used for

stiffness measurement if the oscillation is only thermally

excited without any additional excitation (for instance mechan-

ical vibration). This method is the only one mentioned in this

paper that is able to estimate the spring constant during the

course of an UHV AFM experiment. Generally, UHV AFM/

STM instruments are able to reach a high level of vibrational

isolation, which is needed to minimize extra mechanical excita-

tion from outside of the system.

The square of the output voltage of the thermally exited tuning

fork can be expressed as

(6)

where nth is the thermal noise density and B is the bandwidth

[34]. In Equation 6 the range of the measurement determined by

B has to contain all the resonant features. In principle, as long as

this rule holds, the bandwidth should not play any role in the

measurement. If the peak width is much larger than the band-

width, inaccurate results are expected.

There is another factor that has to be considered: In Equation 6

the thermal noise density can be obtained from the power noise

density, , by subtracting the electrical noise density

 from it, thus . The electrical noise

density, , should have white-noise character around the reso-

nance, as a consequence,  does not depend on the frequency.

This requirement is usually well fulfilled around the resonant

frequency of our homemade sensors.

In order to be able to evaluate the physical magnitude of the

oscillation amplitude, the conversion factor (C = Vth/Ath) needs

to be determined. C was estimated during dynamic STM

measurement on a clean Si(111)-(7 × 7) surface with a preci-

sion of ≈10%. It is worth noting that, as the amplitude Ath is

represented in Equation 5 as a square value, the error in the

stiffness measurement will be two times higher than the error in

the amplitude.

Stiffness values that were calculated from the thermal noise of

the sensor are summarized in Table 3.

Comparison of the methods
We found good agreement between calculated stiffness values

using the three methods, as can be seen from a direct compari-

son in Table 4. The variation in the calculated stiffness values

stays within the 10% range for both the continuum theory of

elasticity and Cleveland’s method; and within 20% range for

the thermal-excitation method (see Table 4). Surprisingly, we

did not observe a systematic error between results provided by

the added-mass method and calculated stiffness values from the

continuum theory of elasticity. This finding suggests that the

thin gold wire attached to the end of the prong has only a minor

effect on the overall stiffness. In the case of a straight Au wire,

the stiffness can be obtained from

(7)

where d is the diameter, l is the length of the wire and E is the

Young’s modulus (79 GPa for Au). The negligible role of the

wire is mainly due to the relatively small diameter (25 μm) of

the Au wire. In our case, the typical length of the Au wire is

≈500–600 μm. Using Equation 7, we obtain the stiffness of the

gold wire ≈200–160 N/m. This value is much lower than the

stiffness of the tuning fork itself (especially of shortened tuning

forks). To test the negligible effect of the gold wire on the

sensor stiffness in more detail, we repeated the added-mass

measurement after the wire had been removed (see Table 4,



Beilstein J. Nanotechnol. 2013, 4, 1–9.

7

Table 4: Summary of stiffness values obtained by the introduced methods.

Sensor l [mm] k [N/m]

Continuum theory of elasticity Cleveland’s method Thermal excitation

hb1 1.802 3818 ± 83 3835 ± 211 3650 ± 369
hb2 1.769 3887 ± 78 3846 ± 218 3702 ± 367
hb3 1.816 4056 ± 101 3945 ± 217 3872 ± 382
hb3–w/o wire – – 3991 ± 220 –
hb4 2.314 1943 ± 56 1857 ± 105 1779 ± 179
com 2.400 (2.385) 1757 ± 43 (1872 ± 43) 1782 ± 101 (1829 ± 104) –

sensor hb3 and hb3–w/o wire). From the data we obtained it is

evident that the calculated stiffness does not show any signifi-

cant changes.

From Table 4 we see that the thermal-peak method systemati-

cally underestimates the stiffness compared to two other

methods. We attribute this error to additional (e.g., mechanical)

excitation presented during the measurements. It was shown by

Welker et al. [34] that the mechanical noise becomes dominant

at low temperature, which would imply a very large error in

stiffness calculations based on thermal-noise analysis. However,

we performed our calibration procedure at RT, where the

thermal excitation is much larger and the quality factor of the

tuning fork is also significantly lower (in our case Q ≈

1500–4500). Thus the tuning fork is less responsive to mechan-

ical vibration, although it still cannot be omitted completely.

The piezo scanner was connected to the ground during the

thermal-noise measurement, therefore we can rule out the possi-

bility of additional excitation by electrical noise.

Finally, we would like to address the question of how the preci-

sion of the stiffness would affect experimental force measure-

ments. The force can be expressed by using the Sader formula

[35] as follows

(8)

where Δν is the frequency shift, νr is the resonant frequency, k

is the stiffness of the sensor, A is the amplitude of oscillation, F

is the tip–surface interaction force, x is the tip–surface distance,

and z being the closest tip approach towards the sample.

From Equation 8 it is clear, that an error in the stiffness leads to

a proportional but systematic error in the force measurement. In

the large amplitude limit, there is a second dominant source of

errors in quantitative force analyses, namely the amplitude cali-

bration (see Equation 8).

The other two methods do not depend on the amplitude calibra-

tion. They depend only on size measurements, which can be

calibrated with very high accuracy by using optical or electron

microscopes. Therefore, we suppose that the overall error in the

force measurement is smaller with these methods. Especially

with the added-mass method because this can take into account

other influences on the stiffness such as improper gluing during

sensor construction [22]. We have to note here that in the case

of our home-built sensors neither the gluing nor the length of

the tip seem to have a strong effect on the stiffness. However,

due to the lack of usability of the original, commercial sensors,

we do not have enough samples to be able to contribute to the

previously reported statistics.

Finally the main benefit of the thermal-noise measurement is

that it can be performed any time during the actual AFM

measurement, and at least at RT we have seen quite a good

agreement with the other two methods.

Conclusion
In this paper we applied and compared three different methods

for the estimation of the stiffness of qPlus sensors. Our analysis

showed that all three methods give very similar results varying

within a range of 10% or 14% for the thermal-excitation

method. Surprisingly, the added-mass (Cleveland’s) method

gave very similar results to calculated values from the

continuum theory of elasticity. This finding suggests that a gold

wire does not strongly alter the stiffness. Furthermore, we have

proved that the stiffness can be obtained with reasonably small

error from the thermal noise measurement even at RT.

In addition we designed and built a device for testing qPlus

sensors. It can be used for testing sensors before inserting into

the chamber and to obtain information about mechanical prop-

erties of sensors such as the resonant frequency, quality factor

and stiffness. We also discussed a fast and cost-effective way to

perform the added-mass method under ambient conditions. This

method is based on adding small pieces of tungsten wire whose

mass was determined from the volume of the wire. The wire can
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be easily removed after the measurement without destroying the

sensor.
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